Goldman Sachs Stock Forecast - Polynomial Regression

GS Stock  USD 596.11  14.18  2.44%   
The Polynomial Regression forecasted value of Goldman Sachs Group on the next trading day is expected to be 610.51 with a mean absolute deviation of 11.38 and the sum of the absolute errors of 694.33. Goldman Stock Forecast is based on your current time horizon.
  
At this time, Goldman Sachs' Fixed Asset Turnover is comparatively stable compared to the past year. Asset Turnover is likely to gain to 0.04 in 2024, whereas Inventory Turnover is likely to drop (0.01) in 2024. . Common Stock Shares Outstanding is likely to gain to about 372.9 M in 2024, whereas Net Income Applicable To Common Shares is likely to drop slightly above 7.8 B in 2024.
Goldman Sachs polinomial regression implements a single variable polynomial regression model using the daily prices as the independent variable. The coefficients of the regression for Goldman Sachs Group as well as the accuracy indicators are determined from the period prices.

Goldman Sachs Polynomial Regression Price Forecast For the 23rd of November

Given 90 days horizon, the Polynomial Regression forecasted value of Goldman Sachs Group on the next trading day is expected to be 610.51 with a mean absolute deviation of 11.38, mean absolute percentage error of 214.55, and the sum of the absolute errors of 694.33.
Please note that although there have been many attempts to predict Goldman Stock prices using its time series forecasting, we generally do not recommend using it to place bets in the real market. The most commonly used models for forecasting predictions are the autoregressive models, which specify that Goldman Sachs' next future price depends linearly on its previous prices and some stochastic term (i.e., imperfectly predictable multiplier).

Goldman Sachs Stock Forecast Pattern

Backtest Goldman SachsGoldman Sachs Price PredictionBuy or Sell Advice 

Goldman Sachs Forecasted Value

In the context of forecasting Goldman Sachs' Stock value on the next trading day, we examine the predictive performance of the model to find good statistically significant boundaries of downside and upside scenarios. Goldman Sachs' downside and upside margins for the forecasting period are 608.28 and 612.73, respectively. We have considered Goldman Sachs' daily market price to evaluate the above model's predictive performance. Remember, however, there is no scientific proof or empirical evidence that traditional linear or nonlinear forecasting models outperform artificial intelligence and frequency domain models to provide accurate forecasts consistently.
Market Value
596.11
608.28
Downside
610.51
Expected Value
612.73
Upside

Model Predictive Factors

The below table displays some essential indicators generated by the model showing the Polynomial Regression forecasting method's relative quality and the estimations of the prediction error of Goldman Sachs stock data series using in forecasting. Note that when a statistical model is used to represent Goldman Sachs stock, the representation will rarely be exact; so some information will be lost using the model to explain the process. AIC estimates the relative amount of information lost by a given model: the less information a model loses, the higher its quality.
AICAkaike Information Criteria123.479
BiasArithmetic mean of the errors None
MADMean absolute deviation11.3825
MAPEMean absolute percentage error0.0214
SAESum of the absolute errors694.3305
A single variable polynomial regression model attempts to put a curve through the Goldman Sachs historical price points. Mathematically, assuming the independent variable is X and the dependent variable is Y, this line can be indicated as: Y = a0 + a1*X + a2*X2 + a3*X3 + ... + am*Xm

Predictive Modules for Goldman Sachs

There are currently many different techniques concerning forecasting the market as a whole, as well as predicting future values of individual securities such as Goldman Sachs Group. Regardless of method or technology, however, to accurately forecast the stock market is more a matter of luck rather than a particular technique. Nevertheless, trying to predict the stock market accurately is still an essential part of the overall investment decision process. Using different forecasting techniques and comparing the results might improve your chances of accuracy even though unexpected events may often change the market sentiment and impact your forecasting results.
Sophisticated investors, who have witnessed many market ups and downs, anticipate that the market will even out over time. This tendency of Goldman Sachs' price to converge to an average value over time is called mean reversion. However, historically, high market prices usually discourage investors that believe in mean reversion to invest, while low prices are viewed as an opportunity to buy.
Hype
Prediction
LowEstimatedHigh
592.35594.58596.81
Details
Intrinsic
Valuation
LowRealHigh
528.85531.08655.72
Details
Bollinger
Band Projection (param)
LowMiddleHigh
486.90558.44629.99
Details
22 Analysts
Consensus
LowTargetHigh
326.46358.75398.21
Details

Other Forecasting Options for Goldman Sachs

For every potential investor in Goldman, whether a beginner or expert, Goldman Sachs' price movement is the inherent factor that sparks whether it is viable to invest in it or hold it better. Goldman Stock price charts are filled with many 'noises.' These noises can hugely alter the decision one can make regarding investing in Goldman. Basic forecasting techniques help filter out the noise by identifying Goldman Sachs' price trends.

Goldman Sachs Related Equities

One of the popular trading techniques among algorithmic traders is to use market-neutral strategies where every trade hedges away some risk. Because there are two separate transactions required, even if one position performs unexpectedly, the other equity can make up some of the losses. Below are some of the equities that can be combined with Goldman Sachs stock to make a market-neutral strategy. Peer analysis of Goldman Sachs could also be used in its relative valuation, which is a method of valuing Goldman Sachs by comparing valuation metrics with similar companies.
 Risk & Return  Correlation

Goldman Sachs Group Technical and Predictive Analytics

The stock market is financially volatile. Despite the volatility, there exist limitless possibilities of gaining profits and building passive income portfolios. With the complexity of Goldman Sachs' price movements, a comprehensive understanding of forecasting methods that an investor can rely on to make the right move is invaluable. These methods predict trends that assist an investor in predicting the movement of Goldman Sachs' current price.

Goldman Sachs Market Strength Events

Market strength indicators help investors to evaluate how Goldman Sachs stock reacts to ongoing and evolving market conditions. The investors can use it to make informed decisions about market timing, and determine when trading Goldman Sachs shares will generate the highest return on investment. By undertsting and applying Goldman Sachs stock market strength indicators, traders can identify Goldman Sachs Group entry and exit signals to maximize returns.

Goldman Sachs Risk Indicators

The analysis of Goldman Sachs' basic risk indicators is one of the essential steps in accurately forecasting its future price. The process involves identifying the amount of risk involved in Goldman Sachs' investment and either accepting that risk or mitigating it. Along with some essential techniques for forecasting goldman stock prices, we also provide a set of basic risk indicators that can assist in the individual investment decision or help in hedging the risk of your existing portfolios.
Please note, the risk measures we provide can be used independently or collectively to perform a risk assessment. When comparing two potential investments, we recommend comparing similar equities with homogenous growth potential and valuation from related markets to determine which investment holds the most risk.

Thematic Opportunities

Explore Investment Opportunities

Build portfolios using Macroaxis predefined set of investing ideas. Many of Macroaxis investing ideas can easily outperform a given market. Ideas can also be optimized per your risk profile before portfolio origination is invoked. Macroaxis thematic optimization helps investors identify companies most likely to benefit from changes or shifts in various micro-economic or local macro-level trends. Originating optimal thematic portfolios involves aligning investors' personal views, ideas, and beliefs with their actual investments.
Explore Investing Ideas  

Additional Tools for Goldman Stock Analysis

When running Goldman Sachs' price analysis, check to measure Goldman Sachs' market volatility, profitability, liquidity, solvency, efficiency, growth potential, financial leverage, and other vital indicators. We have many different tools that can be utilized to determine how healthy Goldman Sachs is operating at the current time. Most of Goldman Sachs' value examination focuses on studying past and present price action to predict the probability of Goldman Sachs' future price movements. You can analyze the entity against its peers and the financial market as a whole to determine factors that move Goldman Sachs' price. Additionally, you may evaluate how the addition of Goldman Sachs to your portfolios can decrease your overall portfolio volatility.